skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Callaway, Jumia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solid polymer electrolytes offer potential improvements to lithium ion batteries that include extending their operating temperature range and improving the safe use of the batteries by inhibiting lithium dendrite formation. Because solid polymer electrolytes replace traditional liquid electrolytes as the lithium ion transport medium and also act as the electrode separator, these materials must offer good ionic conductivity along with providing good interfacial contact with the electrode material. This work presents the synthesis and characterization of polymer blends comprised poly(ethylene oxide) and phosphonium ionenes. Ionenes are a class of polycation that includes positive charges within the polymer backbone. Because the positive charge is a part of the polymer chain, the spacing and distribution of these charges have a significant impact on the properties of ionenes. This research focuses on determining the role of charge spacing and distribution of charges along the backbone of phosphonium ionenes on their ability to transport lithium ions. To accomplish this, phosphonium ionenes are blended with low molecular weight poly(ethylene oxide) (e.g. less than 3,000 g/mol) at mass ratios of 20:1, 10:1, and 5:1. The resulting blended solid polymer electrolyte membranes are evaluated for their thermal, mechanical and electrochemical properties along with their charge/discharge performance in coin cell batteries. The dependence of phosphonium ionene structure as well as the composition of SPE blends will be presented. 
    more » « less